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Abstract 

Cancer pagurus and Cancer borealis and are edible crabs produced by economically relevant 
aquaculture. In this study the hemocytes and some plasmatic parameters of Cancer borealis and 
Cancer pagurus were examined. The cell features of the hemocytes were observed using light and 
scanning electron microscopy (SEM). Granulocytes, semigranulocytes and hyalinocytes were mainly 
identified on the basis of size, presence/absence and quantity of the cytoplasmic granules and the 
nucleus-to-citoplasma (N/C) ratio. SEM observations were useful for disclosing the surface features of 
these cells, and the same characteristics were found in both crab species. A smooth surface 
distinguishes elongated hyalinocytes and a rough texture the irregular surface of spherical/ovoid 
granular cells. Total (THC) and differential hemocyte counts (DHC) were performed, and the 
differences between the two crab species were disclosed. Also we were valuated pH and osmolarity 
values, agglutinating activity and different protein contents of the hemolymph. 
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Introduction 

 
Hemocytes circulating in hemolymph play a key 

role in the innate immune response of crustaceans, 
and are the first line of defense against internal 
pathogens such as viruses, bacteria and parasites 
(Bauchau, 1981). Hemocytes can lead to 
phagocytosis, encapsulation, and the lysis of foreign 
cells (Smith and Söderhäll, 1983; Ratcliffe et al., 
1985; Söderhäll and Smith, 1986; Johansson and 
Söderhäll, 1989; Söderhäll and Cerenius, 1992). 
They also play an essential role in melanization 
(Johansson et al., 2000). In addition, they release 
the humoral factors (including agglutinins) that are 
involved in phagocytosis and cell communication, 
leading to the degranulation of hemocytes (Hose et 
al., 1987; Johansson, 1995; Johansson et al., 
2000). However, the classification and functional 
morphology of crustacean hemocytes is often 
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controversial due to the methods and criteria used. 
Classification is generally based on the 
presence/absence of cytoplasmic granules, and 
three types of circulating hemocytes have usually 
been reported as hyalinocytes (cells without evident 
granules), semigranulocytes (containing small 
granules) and granulocytes (with abundant 
cytoplasmic granules) (Bauchau, 1981). However, 
granulocytes have also been called granular 
eosinophils or granular amebocytes, while 
semigranulocytes have been regarded as 
monocytes or intermediate cells, and hyalinocytes 
as phagocytes or pro-hemocytes (Toney, 1958; 
Stang-Voss, 1971; Ravindranath 1974; Bodammer 
1978; Cornick et al., 1978; Smith and Ratcliffe 
1978). Johnston et al. (1973) distinguished two 
hemocyte types (α-and β-cells) in Carcinus maenas, 
and these can be recognized on the basis of the 
presence/absence of glycogen-containing granules 
(William and Lutz, 1975). In Callinectes sapidus, 
Clare and Lumb (1994) identified three hemocyte 
types, hyaline cells, and small and large 
granulocytes. In Panulirus homarus, meanwhile, 
four types of hemocytes (pro-hyalocytes, 
hyalocytes, eosinophilic granulocytes and 
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chromophilic granulocytes) have been described 
(Manjula et al., 1997). Finally, 11 cell types that are 
morphologically distinguishable have been 
described in Homarus americanus (Battison et al., 
2003). 

Each cell type is active in defence reactions, 
with the hyaline cells chiefly involved in 
phagocytosis, the semigranular cells in 
encapsulation, and the granular cells in the storage 
and release of the prophenoloxidase (proPO) 
system and cytotoxic factors (Giulianini et al., 2007; 
Celi et al., 2015). The proportion of hemocyte types 
in the hemolymph varies among species. Total 
hemocyte counts (THC) and differential hemocytes 
counts (DHC) have been reported as stress 
indicators (Jones, 1962; Le Moullac et al., 1998; 
Lorenzon et al., 2008), and may be valuable tools 
for monitoring the health status of crustacean 
species (Jussila et al., 1997; Mix and Sparks, 1980; 
Battison et al., 2003).  

The crustacean decapods Cancer pagurus and 
Cancer borealis are paired as sister species 
(Harrison and Crespi 1999), and are edible crabs 
produced by economically relevant aquaculture 
(Robichaud and Frail, 2006; Stentiford, 2008). The 
data reported in the literature on the ecology of the 
two species are limited and fragmentary. 

The two species live in intertidal and subtidal 
habitats and consume a wide variety of prey 
(Lawton and Elner, 1985; Creswell and Marsden, 
1990). The Jonah crab, Cancer borealis occurs 
along the east coast of North America, while Cancer 
pagurus is found in the Northeast Atlantic Ocean, 
along the coast of Europe (Galan and Eriksson 
2009). Jonah crabs are commercially harvested in 
the U.S. and Canada. The crustacean C. pagurus, 
which is commonly known as either the European 
edible crab or the brown crab, is the most 
commercially important crab species in Western 
Europe. Both species are fished offshore using 
baited pots or other traps. The aim of this study is to 
provide further information on the cells and 
plasmatic aspects of the species described above. 
In particular, the paper examines the morphological 
characterization of circulating hemocytes under light 
and scanning electron microscopy (SEM), the basic 
profile of the THC and DHC, and some plasmatic 
properties of the hemolymph. 

 
Materials and methods 
 
Animals 

Fifteen specimens of the Jonah crab Cancer 
borealis (catch area Northwest Atlantic) and the 
same number of Cancer pagurus (catch area 
Northeast Atlantic), weighing 500 ± 100 g each, 
were supplied by L.P.A PESCA srl (Rimini). The 
specimens were held in running seawater tanks  at 
the premises of another local company, Prontomar 
srl (Palermo), until the time of sale. Prior to 
collection of the hemolymph, the crabs were 
maintained in a circulating seawater aquarium at the 
university premises (10 °C Cancer borealis and 15 
°C Cancer pagurus) for about 48 h according to the 
work of Vogan and Rowley (2002). 
 
 

Hemolymph sampling  
According to the work of Söderhäll and Smith 

(1983), 15 crabs of both species were anesthetized 
on ice for 10 min and the hemolymph was then 
withdrawn from the unsclerotized membranes of the 
cheliped. Since extremely rapid coagulation 
occurred, a syringe (23-gauge needle) with an equal 
volume of an anticoagulant (glucose 100 mM, NaCl 
450 mM, sodium citrate 30 mM, citric acid 26 mM, 
EDTA 10 mM, pH 4.6) was used to prevent clotting. 
Consequently, plasma, separated by centrifuging 
(400g) at 4 °C for 10 min, was used to evaluate 
some of the plasmatic parameters. 

 
Total and differential hemocyte counts and 
cytological staining 

The total hemocyte number per mL (THC) was 
determined using a Neubauer hemocytometer 
chamber. Differential counts were performed on 
slides prepared with 100 μl of a diluted cell 
suspension (3x106 cells). The hemocyte monolayer 
was fixed with 1 % glutaraldehyde in 3.2 % NaCl for 
30 min at 4 °C. The hemocytes were stained with a 
May-Grünwald solution (3 min) followed by a 
Giemsa solution (1:10 dilution for 10 min), and 
dehydrated with ethanol. After immersion in xylene 
(6 min), the slides were closed  with  a Eukitt 
mounting medium (Fluka) (Celi et al., 2013). The 
cells were then counted in random areas, and the 
numbers and relative proportions of hemocyte types 
were calculated by counting at least 200 cells on 
each slide. The cells were observed under a Leica 
DMRE microscope, and the DHC was determined 
using the following equation: 
 
 
 number of different hemocyte cell types 
DHC (%) = 
 
 
 

The cell sizes (length and width) and nuclear to 
cytoplasmic (N/C) ratios were calculated with the 
Image J software, which is an image processing 
program. 

 
Plasma pH, osmolarity and protein assessment  

The hemolymph’s pH was measured with a 
glass microelectrode and a pH meter (Crison, Italy). 
Osmolarity was estimated with a freezing-point 
depression osmometer (Roebling, Berlin, Germany). 
The total protein concentration of the plasma was 
estimated using a Qubit fluorometer (Life 
Technologies) for sensitive fluorescence-based 
quantization assays in accordance with the 
manufacturer’s instructions. 

 
Scanning electron microscopy (SEM) 

Fresh hemolymph from C. borealis and C. 
pagurus was dropped directly on to coverslips pre-
treated with 0.1 % poly-L-lysine. After adhesion, the 
monolayer was fixed in a cacodylate buffer (0.1 M, 
pH 7.3) containing 2.5 % glutaraldehyde for 30 min 
at 4 °C. The cells, which were washed with a 
cacodylate buffer, were post-fixed with 1 % osmium 

 
 

total hemocyte cells counted 
x 100 
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Table 1 Morphometric measures and differential count of hemocyte types from Cancer borealis and Cancer 
pagurus hemolymph 
 

Cell types  Cancer borealis Cancer pagurus 

% (DHC) 47.6±2.2 30±1.4 

Cell length 
(μm) 19.3±1.66 19.4±2.2 

Cell width 
(μm) 4.8±0.9 3.3±0.6 

Hyaline 

N/C (%) 25±4 36±9 

% (DHC) 45.2±3.3 60±6.2 

Cell length 
(μm) 9.7±0.46 11.4±1.1 

Cell width 
(μm) 8.7±0.6 5.5±1 

Semigranulocytes 

N/C (%) 23±4 26±5 

% (DHC) 7.2±2.4 9.4±0.3 

Cell length 
(μm) 13.0±1.7 11.3±1.5 

Cell width 
(μm) 8.8±1.33 6.6±0.9 

Granulocytes 

N/C (%) 16±1 23±2 

 
DHC: differential hemocyte count; N/C: nucleus/cytoplasm ratio. Values are  expressed as mean ± SD and range 
n = 15. 
 
 
 
 
 
tetroxide for 30 min at 4 °C, dehydrated in graded 
alcohol and dried at the critical point. The 
preparations were mounted on stubs, gold coated in 
a sputter coater and examined under a LEO 420 
SEM. Hemolymph from three distinct specimens 
was examined. 

 
Hemagglutination assay 

The hemagglutinating activity (HA) of two fold-
diluted samples was assayed in a 96-well microtiter 
U-plate containing a suspension of 1 % rabbit red 
blood cells (RRBC) or sheep red blood cells (SRBC) 
in phosphate buffered saline (PBS-E: 6 mmol/l 
KH2PO4, 0.11 mmol/l Na2HPO4, 30 mmol/l NaCl, pH 
7.4). Erythrocytes were supplied by the “Istituto 
Zooprofilattico della Sicilia” (Palermo, Italy) and 
maintained in a sterile Alsever’s solution (27 mmol/l 
sodium citrate, 115 mmol/l D-glucose, 18 mmol/l 
EDTA and 336 mmol/l NaCl in distilled water, pH 
7.2). Tris-buffered saline (TBS; see below) enriched 
with 1 % RRBC and SRBC with 0.1 % (w/v) gelatin 
was used as the reaction medium. Twenty-five 

microliters of plasma were serially diluted and mixed 
with an equal volume of erythrocyte suspension and 
incubated at 37 °C for 1 h. The titer of the 
hemagglutinating activity (HT) was expressed as the 
highest dilution showing a positive score for 
agglutination. Plasma from several specimens was 
separately assayed, and TBS was used in place of 
the plasma as a negative control. Each assay was 
performed in duplicate and the HA titer was 
expressed as the average of the recorded values. 

 
Agglutination of yeast 

A suspension of 100 mg of yeast in 10 ml of 
physiological solution was washed twice with 
physiological saline and centrifuged at 400g for 5 
min. The yeasts were inactivated by an autoclave, 
washed twice in saline and divided into aliquots of 1 
ml. An aliquot was centrifuged at 400g for 5 min and 
25 µl of pellet was resuspended in 1 ml of TBS gel. 
The plate was prepared following the procedure 
described above and incubated for 1 h at 37 °C. The 
titer of the HT was calculated as set out above. 
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Statistical analysis 

All values were from five samples in triplicate. 
Data were given as arithmetic means ± standard 
deviations. We used analysis of the t test for a 
comparison of the N/C ratio between species. 

 
Results 
 
Light microscopy observations 

The C. borealis and C. pagurus hemocyte 
monolayers showed flattened and well-spread cells, 
and three morphologically distinguishable cell types 
were found. May-Grünwald-Giemsa cytological 
staining allowed us to recognize: 1. hyalinocytes (C. 
borealis: 19.3 ± 1.66 μm in length; C. pagurus: 19.4 
± 2.2 μm in length) that had an elongated shape and 
missing cytoplasmic granules; 2. semigranulocytes 
(C. borealis: 9.7 ± 0.46 μm in length; C. pagurus: 
11.4 ± 1.1 µm in length) with a few granules; and 3. 
granulocytes (C. borealis: 13.0 ± 1.7 μm in 
diameter; C. pagurus: 11.3 ± 1.5 µm in diameter) 
(Table 1) with a great number of evident 
cytoplasmic granules. 

The hyalinocytes had a central nucleus, a high 
nucleus-cytoplasm ratio. In C. borealis N/C ratio 
was 25 ± 4 %, significantly (p< 0.05) lower than in 
C. pagurus with N/C ratio of 36 ± 9 % and basophilic 
cytoplasm (Figs 1A, D, G, L). In both species, the 
semigranulocytes had a central or an eccentric 
nucleus (C. borealis 26 ± 5 %; C. pagurus 23 ± 4 % 
N/C) (Figs 1B, E, H, J), whereas the granulocytes 
had an eccentric nucleus. In C. borealis N/C ratio 
was 23 ± 2 %, significantly (p< 0.01) lower than in 
C. pagurus 16 ± 1 %, (Figs 1C, F, I, K). The 
granulocytes mainly contained eosinophilic granules 
(eosin staining), which were large and few in 
number in the C. borealis hemolymph, and small 
and numerous in the C. pagurus hemolymph (Figs 
1I, K). Only a few basophilic granulations were 
observed in granulocytes from both crab species. 
The semigranulocytes of C. borealis contained small 
basophilic granules, whereas the semigranulocytes 
in the cytoplasm of C. pagurus contained both 
basophil and eosinophilic small granules. 

When examined by an SEM, hemocytes from 
both crab species had the same morphological 
features and similar measures as observed with 
light microscopy (Figs 1D, E, F, L, J, K). The 
elongated hyalinocytes had a smooth surface, 
whereas an irregular surface characterized ovoid or 
spherical semigranular cells, and a rough texture of 
the cell surface distinguished spherical 
granulocytes. 
 
THC and DHC 

The THC was 4.7 ± 0.4x106 cell/ml in C. 
borealis and 4.4 ± 0.6x107 cell/ml in C. pagurus. In 
the first species of crab, the hyalinocytes and 
semigranulocytes were numerous and similar in 
number (45.2 ± 3.3 % and 47.6 ± 2.2 % 
respectively). In contrast, in the second species, the 
hyalinocytes were present in a lower proportion (30 
± 1.4 %) and the semigranulocytes a higher 
proportion (60 ± 6.2 %). Finally, the granulocyte 
proportions were similar in each species (7.2 ± 2.4 
% and 9.4 ± 0.3 %, respectively). 

 
Hemolymph parameters and hemagglutinating 
activity 

To check for plasmatic parameters, the pH, 
osmolarity and protein content of 15 specimens of 
each crab species were recorded by examining the 
plasma samples prepared in the presence of an 
anticoagulant (1:3 plasma/anticoagulant ratio). The 
pH values were 7.2 ± 0.08 in C. borealis and 7.4 ± 
0.04 in C. pagurus. The osmolarity was 958 ± 28 
mOsm/kg (C. borealis) and 762 ± 19 mOsm/kg (C. 
pagurus), while the protein content ranged from 
27.3 ± 5.1 μg/µl (C. borealis) to 38.8 ± 6.2 μg/µl (C. 
pagurus). 

The plasma from the two species exerted in 
vitro agglutinating activity in the absence of calcium 
cations, as revealed with rabbit and sheep 
erythrocytes and yeast (S. cerevisiae). The C. 
borealis plasma agglutinated both erythrocyte types 
up to a serial dilution of 1:64, whereas lower titers 
were found by assaying the C. pagurus plasma with 
rabbit (titer: 1:4) and sheep (titer: 1:2) erythrocytes, 
respectively. The agglutinin titers of the plasma 
samples from both species, assayed with yeast, 
were 1:16 and 1:2, respectively. 

 
Discussion 

 
It is known that live crabs are generally very 

delicate animals that should always be handled with 
great care. In fact, different research reports the 
negative effects of transport on the physiology of 
crustaceans (Lorenzon et al., 2008; Woll et al., 
2010). In this study, before starting our 
observations, we determined that the animals 
showed no physiological changes after 48 h of 
acclimatization following a short journey (about 20 
min) compared to samples taken directly at the 
commercial point. 

Morphological characterization, cell type 
identification, differential numbering of hemolymph 
cell populations of reared crab hemocytes, some 
plasmatic parameters and agglutinating titers of the 
plasma hemolymph may contribute to examinations 
of the physiological role of reared crabs and the 
monitoring of their health (Celi et al., 2013). 

The cell features of circulating hemocytes from 
C. borealis and C. pagurus were examined with 
May-Grünwald-Giemsa staining, and using light and 
SEM observations. According to the morphological 
criterion proposed by Bauchau and Plaquet (1973), 
Hose et al. (1990), and Sung and Sun (2002), 
granulocytes, semigranulocytes and hyalinocytes in 
the hemolymph from both crab species were 
identified on the basis of the presence/absence, 
quantity and cytochemical features of the granules, 
size and N/C ratios of the cells. A similar 
classification has been adopted for hemocytes from 
other crustacean species (Jussila et al., 1997; 
Gargioni and Barracco, 1998; Hammond and Smith, 
2002; Yavuzcan and Atar, 2002, Matozzo and Marin 
2010). Fusiform hyalinocytes with a basophilic 
cytoplasm and a central nucleus were smaller than 
granule-containing cells, which had a higher 
nucleus/cytoplasm ratio. The cytoplasm of the 
semigranulocytes contained a central or eccentric 
nucleus, whereas the granulocytes always had an 
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Fig. 1 Features of the hemocyte types from Cancer borealis and Cancer pagurus hemolymph. C. borealis: A - C: 
MayGrunwald-Giemsa stain; D-F: SEM observations. A, D: hyalinocytes, B, E: semigranulocytes, C, F: 
granulocytes. C. pagurus: G - I: May-Grünwald-Giemsa stain; L - K: SEM observations. G, L: hyalinocytes, H, J: 
semigranulocytes, I, K: granulocytes. Bars: 10 μm. The arrows indicate the eosinophilic granules (eg) and 
basophilic granules (bg). 
 
 
 
 
 
eccentric nucleus. The cytoplasm of the 
granulocytes was packed with large and round 
granules, whereas the semigranulocytes contained 
a lesser amount of smaller granules. In both cases, 
the May-Grünwald-Giemsa staining disclosed that a 
large part of the granules were eosinophilic and 
differed between the two crab species; they were 
few in number and large in the C. borealis 
granulocytes, and small and numerous in the C. 
pagurus granulocytes. Finally, fine eosinophilic 
granules were also contained in the cytoplasm of C. 
pagurus semigranulocytes. SEM observations were 
useful for disclosing the surface morphology of 

these cells from the hemolymph, which showed the 
same main features in both crab species. The 
elongated hyalinocytes had a smooth surface, the 
ovoid or spherical semigranular cells an irregular 
surface, and the spherical granular cells a cell 
surface with a rough texture. 

Hemocytes play a central role in the immune 
defenses of crustaceans (Söderhäll and Cerenius, 
1992; Zhang et al., 2006); in fact, the total and 
differential hemocyte counts provide a useful way of 
assessing the physiological state of an animal 
(Battison et al., 2003). Unfortunately, although a 
wide range of values are available, differences in 
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the classification schemes used have prevented the 
comparison of hemocyte profiles among different 
crustaceans. (Rodriguez and Le Moullac, 2000). 
The THC for C. pagurus reported in this study is in 
accordance with the findings of Vogan and Rowley 
(2002) and Lorenzon et al. (2008), but no dates are 
reported in the research for C. borealis. The THC of 
C. borealis is lower than for C. pagurus, but is in 
accordance with the range presented for other 
crustaceans (Celi et al., 2013; Filiciotto et al., 2014). 
Probably, this difference is due to the different 
ecology and geographic distribution of the two 
species. 

The DHC have provided varying results 
between crustacean species. Hyalinocytes and 
semigranulocytes were more represented in the 
circulating hemolymph of C. borealis and C. 
pagurus. Conversely, in M. rosenbergii, hyalinocytes 
comprised 70 % of the total hemocytes and no 
semigranulocytes were found (Vázquez et al., 
1997). In Sicyonia ingentis, 50 - 60 % of the 
circulating hemocytes were hyalinocytes, whereas 
the semigranulocytes and granulocytes comprised 
30 % and 10 % of the total, respectively (Hose and 
Martin, 1989). High percentages of hyalinocytes 
(five to eight times more abundant than 
granulocytes) have been observed in the crab 
Eriocheir sinensis (Bauchau and Plaquet, 1973), the 
lobster Panulirus interruptus (about 56 %) (Hose et 
al., 1990) and the crayfish Procambarus clarkii 
(more than 70 %) (Lanz et al., 1993). Conversely, in 
the lobster H. americanus and the crab 
Loxorhynchus grandis, the semigranulocytes 
reached more than 60 % of the total cell numbers 
(Hose et al., 1990). Although the significance of this 
marked variability in the relative proportions of each 
hemocyte type among crustacean species remains 
unclear, it does appear to be useful when it comes 
to characterizing the hemocytes of every reared 
crab species. In addition, preliminary morphological 
observations of hemocytes under a light microscope 
and SEM could be useful for further fine structural 
studies, and may contribute to determining the 
functional activity of the cell types that may be 
involved in immunity. 

Furthermore, although the plasmatic 
parameters were checked by using 1:3 diluted 
plasma in the presence of an anticoagulant, they 
could be health indicators in reared crustaceans 
(Chang et al., 2007). 

Several authors have reported the pH values of 
C. pagurus, but these were not identical (Lorenzon 
et al., 2008; Woll et al., 2010; Barrento et al., 2011). 
We found similar pH values for both species that are 
also in according to the same authors above 
mentioned. 

Many studies on crustaceans describe the 
osmolarity values in stress conditions (Charmantier 
et al., 1989; Charmantier and Soyez, 1994; Lignot et 
al., 2000). In this study also, different values of 
osmolarity for the two species examined were 
reported, with C. borealis having higher values. 
Conversely, the protein content was lower in the 
plasma of C. borealis than C. pagurus. Although 
hemolymph proteins are another important 
physiological parameter in crustaceans, the 
literature reveals wide variations in hemolymph 

protein concentrations (Depledge and Bjerregaard, 
1989; Lorenzon et al., 2011). 

The agglutinins that play a role in protecting 
against bacterial infections are another important 
component of the hemolymph in terms of an 
immune defense role (Sahoo et al., 2007). The 
agglutinins are synthesized and discharged in the 
hemolymph by hemocytes (Rodríguez et al., 1995). 
The presence of agglutinins in the hemolymph of 
both examined crab species was revealed by using 
mammalian erythrocytes and yeast as targets. The 
results with respect to the two species were 
different, with more agglutinating activity being 
revealed for C. borealis. Since plasma samples 
were prepared with a cation-chelating agent, the 
possibility exists that agglutinins may have 
properties of calcium-independent lectins (Basil-
Rose et al., 2014). In addition, due to the 
hemolymph sample dilution (1:3 with anticoagulant), 
the agglutinin titers may be higher than those 
reported here. 

Finally, it is of interest to disclose the 
hematological and plasmatic parameters of reared 
crabs, because the DHC, plasmatic parameters and 
agglutinin titer could be influenced by the moult 
cycle, diet, harvesting, diseases and environmental 
contaminants (Lorenzon et al., 2007; Matozzo et al., 
2011). 
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